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Introduction

� OPT++ is an open source toolkit for general 
nonlinear optimization problems

� Original development started in 1992 at Sandia 
National Labs/CA

� Major contributors
� Juan Meza, LBNL
� Ricardo Oliva, LBNL
� Patty Hough, SNL/CA
� Pam Williams, SNL/CA
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Total = 338
Other (Country not identified) = 120

As of April, 2003

Global OPTimizationGlobal OPTimization
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Simulation-based optimization problems

� Predict properties of 
nanostructures or design 
nanostructures with 
desired properties

� Protein folding problem: 
Predicting  the natural 
configuration of a protein 
from its amino sequence.  
Optimization approach: 
Find the configuration that  
minimizes an energy 
potential model (AMBER)



6Fifth Workshop on the DOE Advanced Computational Software Collection  
Berkeley, CA, August 24-27, 2004

Parameter identification example

� Find model parameters, 
satisfying some bounds, 
for which the simulation 
matches the observed 
temperature profiles

� Computing objective 
function requires 
running thermal 
analysis code

� Each simulation 
requires approximately 
7 hours on 1 processor



7Fifth Workshop on the DOE Advanced Computational Software Collection  
Berkeley, CA, August 24-27, 2004

Formulation of parameter ID problem

� Objective function 
consists of computing 
the temperature 
difference between 
simulation results and 
experimental data

� Optimization 
landscape contains 
many local minima

� Uncertainty in both 
the measurements 
and the model 
parameters
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General Optimization Problem
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Optimization Problem Types

� Unconstrained optimization
� Bound constrained optimization

� Only upper and lower bounds
� Sometimes called “box” constraints

� General nonlinearly constrained optimization
� Equality and inequality constraints
� Usually nonlinear

� Some special case classes (not currently handled in 
OPT++)
� Linear programming (function and constraints linear)
� Quadratic programming (quadratic function, linear 

constraints)
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Some working assumptions

�Objective function is smooth
� Usually true, but simulations can create noisy 

behavior
�Twice continuously differentiable

� Usually true, but difficult to prove
�Constraints are linearly independent

� Users can sometimes over-specify or incorrectly 
guess constraints

�Inexpensive objective functions
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OPT++ Philosophy

� Problem should be defined in terms the user 
understands
� Do I have second derivatives available? and not
Is my objective function twice continuously differentiable?
� Is my function expensive to compute ?

� Solution methods should be easily interchangeable
� Once the problem is set up, methods should be easy to 

interchange so that the user can compare algorithms

� Common components of algorithms should be 
interchangeable
� Algorithm developers should be able to re-use common 

components from other algorithms, for example line 
searches, step computations, etc.
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Classes of Problems in OPT++

�Four major classes of problems available
� NLF0(ndim, fcn, init_fcn, constraint)

• Basic nonlinear function, no derivative information 
available

� NLF1(ndim, fcn, init_fcn, constraint)
• Nonlinear function, first derivative information available

� FDNLF1(ndim, fcn, init_fcn, constraint)
• Nonlinear function, first derivative information 

approximated

� NLF2(ndim, fcn, init_fcn, constraint)
• Nonlinear function, first and second derivative 

information available
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Classes of Solvers in OPT++

� Direct search
� No derivative information required

� Conjugate Gradient
� Derivative information may be available but doesn’t use 

quadratic information

� Newton-type methods
� Algorithm attempts to use/approximate quadratic information
� Newton
� Finite-Difference Newton
� Quasi-Newton
� NIPS
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Constraints

� Constraint types
� BoundConstraint 
� LinearInequality  
� NonLinearInequality
� LinearEquation
� NonLinearEquation

� Everything combined
� CompoundConstraint
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Quick tour of some of the algorithms



16Fifth Workshop on the DOE Advanced Computational Software Collection  
Berkeley, CA, August 24-27, 2004

� Can handle noisy 
functions

� Do not require 
derivative information

� Inherently parallel
� Convergence can be 

painfully slow

Pattern search
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Conjugate Gradient Methods

� Standard nonlinear conjugate gradient
� Two different types of line searches

• mcsrch (Moré & Thuente)
• Backtrack with cubic fit.

� Limited Memory BFGS
� Unconstrained version available
� Bound-constrained under development.
� Suitable for large-scale problems
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Newton-type Methods

� Fast convergence 
properties

� Good global 
convergence 
properties

� Inherently serial
� Difficulties with 

noisy functions

xN

xc

xCP
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NIPS: Nonlinear Interior Point Solver

� Interior point method
� Based on Newton’s method for a particular system of 

equations (perturbed Karush-Kuhn-Tucker, KKT, 
equations, slack variable form)

� Can handle general nonlinear constraints
� Can handle strict feasibility in most cases

F (µ) =

∇f (x) + ∇h(x)y − ∇g(x)w
w − z
h(x)
g(x) − s
ZSe − µe
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Parallel Optimization
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Schnabel Identified Three Levels for 
Introducing Parallelism Into Optimization (1995) 

� Parallelize evaluation of function/gradient/constraints
� May or may not be easy to implement

� Parallelize linear algebra
� Really only useful if the optimization problem is large-scale

� Parallelize optimization algorithm at a high level, for 
example, multiple function evaluations in parallel
� Parallel Direct Search
� Generalized Pattern Search
� TRPDS
� TRGSS
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Trust Region + PDS

xN

xc

xCP

� Fast convergence 
properties of Newton 
method

� Good global 
convergence properties 
of trust region approach

� Inherent parallelism of 
PDS

� Ability to handle noisy 
functions
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Algorithm Choices Depend on Problem

xxxxOptGSS

xxxOptLBFGS

x
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x
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x
FDNLF1

xxOptFDNewton

xOptNIPS
xOptBCNewton
xOptNewton
xxOptFDNIPS

xxOptBCQNewton
xxOptQNewton

xxOptCG

xxxOptPDS
NLF2NLF1NLF0
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Example 1: unconstrained optimization

void init_rosen_x0(int ndim, ColumnVector& x);
void rosen(int ndim, const ColumnVector& x, double& fx, int& result);

int main() {

int ndim = 2;

FDNLF1 nlp(ndim, rosen, init_rosen_x0);

nlp.initFcn();

OptQNewton objfcn(&nlp);

objfcn.setSearchStrategy(TrustRegion);

objfcn.setMaxFeval(200);

objfcn.setFcnTol(1.e-4);

objfcn.optimize();

}
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Example 2: Constrained optimization
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Constrained optimization: Step 1

int ndim = 3; 

ColumnVector lower(ndim), upper(ndim); 

lower << -4.5 << -4.5 << -5.0;    

upper << 4.5 << 4.5 << 5.0 ; 

Constraint bc = new BoundConstraint(ndim, lower, upper);

Defining the bound constraints: −4.5 ≤ x1 ≤ 4.5,
−4.5 ≤ x2 ≤ 4.5,
−5.0 ≤ x3 ≤ 5.0
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Constrained optimization: Step 2

NLP* chs65 = new NLP(new NLF2(ndim, 1, ineq, init_hs65_x0));

Constraint nleqn = new NonLinearInequality(chs65); 

Defining the nonlinear inequality constraint:

x1
2 + x2

2 + x3
2 ≤ 48

Collecting both constraints into one constraint object :

CompoundConstraint* constraints = 
new CompoundConstraint(nleqn, bc);
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Constrained optimization: Step 3

NLF2 nips(ndim, hs65_2, init_hs65_x0, constraints); 

nips.initFcn();

Defining and initializing the nonlinear problem:

OptNIPS optobj(&nips);  

optobj.optimize();

Defining the Optimization object and optimizing it!
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Application: Protein Folding

void init_X0(int ndim, ColumnVector& x);
void eval_energy(int ndim, const ColumnVector& x, double& fx, int& 

result);
int main() {

PDB pdb(“t162.pdb”);  // loads pdb file

int ndim = 3 * pdb.NumAtoms();

FDNLF1 nlp(ndim, eval_energy, init_X0);

nlp.initFcn();

OptLBFGS optobj(&nlp);

optobj.setMaxFeval(10000);   

optobj.setFcnTol(1.e-6);

optobj.optimize();

}
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Energy Minimization Using LBFGS

� Energy Function: AMBER
� Protein T209 (CASP6)
� N = 6729 (2243 Atoms)
� LBFGS with M=15
� Total number of LBFGS 

iterations = 71178
� Total number of function 

evaluations = 72758
� Each function evaluation 

takes approximately 2 CPU 
sec

Created by R. Oliva and C. Siegerist,  LBNL 
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Protein T209 (from CASP6)

� Initial configuration 
created using 
ProteinShop (S.Crivelli)

� Energy minimization 
computed using 
OPT++/LBFGS

� Total simulation took 
approximately 62 hours 
on a 2.0 GHz 
Macintosh G4 with 2Gb 
RAM

Created by R. Oliva and C. Siegerist,  LBNL



32Fifth Workshop on the DOE Advanced Computational Software Collection  
Berkeley, CA, August 24-27, 2004

Summary

� OPT++ can handle many types of nonlinear 
optimization problems

� The toolkit can be used to compare the effectiveness 
of several algorithms on the same problem easily

� The user needs to provide only functions for the 
objective function and the constraints
� If additional information is available it can be easily 

incorporated

� The code is open source and available at either
� http://www.nersc.gov/~meza/projects/opt++
� http://csmr.ca.sandia.gov/opt++
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Backup Material
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Comparison of TRPDS with other 
approaches
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Energy vs. LBFGS iterations for T162 Problem
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T162 Protein: ||gradient|| by atom
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4576 atoms

Distribution of ||gradient|| by atom

54 atoms have ||g||2 > 0.5


